Go to the top

Electrical & Computer Engineering
Min-SukKwon

Associate Professor / UNIST

INTRO

Ubiquitous Photonics (UP) Lab is dedicated to research on diverse photonic devices, especially waveguide-based devices. At present, we are focusing on plasmonic or photonic waveguide devices, which are targeted for photonic integrated circuits (ICs) or chemical/biological sensors. We design, simulate, fabricate, and characterize them. In addition, we are studying a few things of nanoplasmonics such as optical antennas and metal nano particles. We are looking for students who are eager to study these things. If you are interested in UP Lab, please feel free to contact Prof. Kwon.

profile

user_profile_9085378118637394978170115

Department : School of Electrical and Computer Engineering(전기전자컴퓨터공학부)
Research Interests : nanophotonic waveguide devices, photonics
Lab : Ubiquitous Photonics Lab
E-Mail : mskwon@unist.ac.kr
Website : http://mskwon.unist.ac.kr/

research

(1) Nanoplasmonic waveguide devices

(2) Photonic waveguide devices

(3) Photonic and plasmonic sensors

(4) Optical trapping technology

publications

1. J.-S. Shin, M.-S. Kwon, and S.-Y. Shin, “Design and analysis of a vertical directional coupler between a three-dimensional plasmonic slot waveguide and a silicon waveguide,” Opt. Commun.
284, 3522-3527 (2011). (Corresponding author)

2. M.-S. Kwon, “Metal-insulator-silicon-insulator-metal waveguides compatible with standard CMOS technology,” Opt. Express 19, 8379-8393 (2011).

3. M.-S. Kwon, “Theoretical investigation of an interferometer-type plasmonic biosensor using a metal-insulator-silicon waveguide,” Plasmonics 5, 347-354 (2010).

4. M.-S. Kwon, “Disposable and compact integrated-plasmonic sensor using a long-period grating,” Opt. Lett. 35, 3835-3837 (2010).

5. M.-S. Kwon, “A numerically stable analysis method for complex multilayer waveguides based on modified transfer-matrix equations,” J. Lightwave Technol. 27, 4407-4414 (2009).

6. M.-S. Kwon and S.-Y. Shin, “Influence of the parameters of a heater array inducing a thermooptic long-period grating on its power consumption,” J. Lightwave Technol. 27, 1108- 1113 (2009).

7. M.-S. Kwon and W. H. Steier, “Microring-resonator-based sensor measuring both the concentration and temperature of a solution,” Opt. Express 16, 9372-9377 (2008). (First and corresponding author)

8. SK Kim, YC Hung, W Yuan, DH Cha, K Geary, H R Fetterman, SM Ha, Q Pei, J Luo, X Zhou, A Jen, MS Kwon, and W Steier, “Metal-slotted polymer optical waveguide device,” Appl. Phys. Lett. 90, 243507 (2007)

9. M.-S. Kwon, “Comments on “Effects of Polarization Rotation in Optical Ring-Resonator-Based Devices”,” J. Lightwave Technol. 24, 5119-5119 (2006).

10. M.-S. Kwon and S.-Y. Shin, “Theoretical investigation of a notch filter using a long-period grating based on the sampling theorem,” Opt. Commun. 263, 214-218 (2006).

11. M.-S. Kwon, Y.B. Cho, and S.-Y. Shin, “Experimental demonstration of a long-period grating based on the sampling theorem,” Appl. Phys. Lett. 88, 211103 (2006). (First and corresponding author)

12. M.-S. Kwon and S.-Y. Shin, “Refractive index sensitivity measurement of a long-period waveguide grating,” IEEE Photon. Technol. Lett. 17, 1923-1925 (2005).

13. M.-S. Kwon and S.-Y. Shin, “Spectral tailoring of uniform long-period waveguide grating by the cladding thickness control,” Opt. Commun. 250, 41-47 (2005).

14. M.-S. Kwon and S.-Y. Shin, “Polymer waveguide notch filter using two stacked thermooptic long-period gratings,” IEEE Photon. Technol. Lett. 17, 792-794 (2005).

15. M.-S. Kwon and S.-Y. Shin, “Characteristics of polymer waveguide notch filters using thermooptical long-period gratings,” IEEE J. Sel. Top. Quantum Electron.. 11, 190-196 (2005).

16. M.-S. Kwon and S.-Y. Shin, “Tunable polymer waveguide notch filter using a thermooptic longperiod grating,” IEEE Photon. Technol. Lett. 17, 145-147 (2005). (First author)

17. Y.-H. Oh, M.-S. Kwon, S.-Y. Shin, S. Choi, and K. Oh, “In-line polarization controller using hollow optical fiber filled with liquid crystal,” Opt. Lett. 29, 2605-2607 (2004).

18. M.-S. Kwon and S.-Y. Shin, “Tunable notch filter using a thermo-optical long-period grating,” J. Lightwave Technol. 22, 1968-1975 (2004).

19. K.-H. Kim, M.-S. Kwon, S.-Y. Shin, and D.-S. Choi, “Vertical digital thermo-optic switch in polymers,” IEEE Photon. Technol. Lett. 16, 783-785 (2004).

20. M.-S. Kwon and S.-Y. Shin, “Simple and fast numerical analysis of multilayer waveguide modes,” Opt. Commun. 233, 119-126 (2004).

21. M.-S. Kwon, K.-H. Kim, Y.-H. Oh, and S.-Y. Shin, “Fabrication of an integrated optical filter using a large-core multimode waveguide vertically coupled to a single-mode waveguide,” Opt. Express 11, 2211-2216 (2003).

22. H.-J. Eom, Y.-H. Cho, and M.-S. Kwon, “Monopole antenna radiation into a parallel-plate waveguide,” IEEE Trans. Antennas Propagat. 48, 1142-1144 (2000).

23. B.-T. Lee, M.-S. Kwon, J.-B. Yoon, and S.-Y. Shin, “Fabrication of polymeric large-core waveguides for optical interconnects using a rubber molding process,” IEEE Photon. Technol. Lett. 12, 62-64 (2000).

education

Min-SukKwon

052-217-2135